Learning Complex Behaviours and Keepaway in Robocup 3D

~ Nilesh Gupta
“Keepers”, tries to keep control of the ball for as long as possible despite the efforts of “Takers”.

KeepAway
Challenges in Keepaway

- Large and **continuous state space**, “curse of dimensionality”
- **Hidden state**, agent has only a partial world view
- **Noisy sensors and actuators**, do not perceive the world exactly as it is, nor can they affect the world exactly as intended
- **Asynchronous**, perception and action cycle different
- **Distributed** and **multi-agent** domain with teammates and adversaries
Keepaway in 2D

- Paper by P. Stone and R. Sutton describes the learning of higher-level decisions in 2D keepaway.
- Modelled keepaway as an SMDP, keepers learn independently, takers strategy fixed.
- Used Sarsa(λ) with linear tile-coding function approximation and variable λ.
3D Robocup Domain Description

- Each robot has **22 degrees of freedom**: six in each leg, four in each arm, and two in the neck.
- Agent is equipped with **joint perceptors and effectors**.
- **Noisy visual information** about the environment is given to an agent every third simulation cycle (60 ms).
- Agents can communicate with each other every other simulation cycle (40 ms).
Additional Challenges in 3D Robocup

(a) 2D Keepaway

(b) 3D Keepaway

(c) Nao Agent

Fig. 1: Comparison between 2D keepaway and 3D keepaway
Additional Challenges in 3D Robocup

- 2D robocup provides convenient primitive action such as `turn(angle)`, `dash(power)`, or `kick(power, angle)`
- Primitives in 3D robocup include apply specified amount of torque on specified hinge.
- To achieve a dash or kick, the agent has to figure out correct sequence of torque values to apply across all it’s 22 hinges over different timesteps
UT Austin’s 2011 Base Code

- Luckily we didn’t had to start from scratch!
- Omnidirectional walk engine based on a double inverted pendulum model
- A couple basic skills for kicking, one of which uses inverse kinematics
- Particle filter for localization and Kalman filter for tracking objects
- All necessary parsing code for sending/receiving messages from/to the server
How to get keepaway working in 3D domain

- Optimise existing **basic skills** as per keepaway requirements
- Learn complex **behaviours** such as getting possession of the ball
- Learn high level decision making **policy** for keepers
Kick Optimization
Kick Engine

For playing keepaway, a robust, precise and mid-range (since keepaway is played within a confined boundary) kick is required.

UT’s kick need to be optimized
Kick Optimization

We optimize IK kick with respect to the control points of kick trajectory.

Used CMA-ES for optimization.

candidate parameter is evaluated over 12 episodes.
Fitness Function

- $time_factor = episode_end_time - episode_start_time$
- $angle_factor = 2^{-\frac{(angle(ball_finish, ball_start, target)^2}{180.0})}$
- $distance_factor = \max(distance(ball_start, ball_finish), 6.0)$

$$\text{episode_fitness} = \begin{cases} -1 & \text{Failure} \\ distance_factor \times angle_factor / time_factor & \text{Otherwise} \end{cases}$$
Learning Curve

![Graph showing the learning curve with generations on the x-axis and max fitness on the y-axis.](image)
Learning to Get Possession of Ball
Getting Possession of Ball

● Not easy! Different actions suitable for different scenarios

● We define following 4 primitive actions to choose from:
 ○ **INTERCEPT**: move(intercept point), where intercept point is defined as the point perpendicular to ball’s trajectory from agent’s position
 ○ **GO TO FINISH**: move(ballfinish), where ballfinish is ball’s finish position
 ○ **POSITION**: try to position around the ball to prepare for the kick
 ○ **HOLD**: remain still at current location

● Need to learn which action to choose based on current world state
Getting Possession of Ball

Better To Intercept

Better To Go to Finish
Getting Possession of Ball
Complex Behaviour

● Any behaviour which requires combination of primitive actions based on world state to achieve the goal

● We represent a complex behaviour as a state machine whose transitions are governed by the world state

● ComplexBehaviour : (invoke, abort, getSkill, action_map, state, nextstate)
Control by ANNs

state transitions define the control of a complex behaviour

state transitions can be defined using an ANN

Algorithm 1: getSkill

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\text{state} \leftarrow \text{nextstate})</td>
</tr>
<tr>
<td>2</td>
<td>(\text{ann.load}(ext{world.state}))</td>
</tr>
<tr>
<td>3</td>
<td>(\text{output}[1,..,n] \leftarrow \text{ann.activate()})</td>
</tr>
<tr>
<td>4</td>
<td>(\text{nextstate} \leftarrow \arg\max_{i \in {1,..,n}} \text{output}[i])</td>
</tr>
<tr>
<td>5</td>
<td>if (\text{state} \neq \text{nextstate}) then</td>
</tr>
<tr>
<td>6</td>
<td>(\text{action.map[state].abort()})</td>
</tr>
<tr>
<td>7</td>
<td>(\text{action.map[nextstate].invoke()})</td>
</tr>
<tr>
<td>8</td>
<td>return (\text{action.map[state].getSkill()})</td>
</tr>
</tbody>
</table>
Optimising Control

- We can optimise ANN to suit our goal but **no well defined loss function**, too much variance
- Can **define a reward function** as how well a particular candidate did on the task, evaluate over few episodes (~20) to reduce variance
- We try to optimise the ANN using **Neuro Evolution of Augmenting Topologies (NEAT)**
- NEAT is a genetic algorithm for the generation of **evolving artificial neural networks**
Initialising NEAT with good candidates

- 3D simulations are **computationally expensive**, need to be sample efficient
- Start NEAT with good seed to **minimize the training time** and motivate the optimisation towards the **candidates that we expect to be good**
- **Imitate a human behaviour** of state transitions to generate good seed
Results on Keepaway
3 vs 2 Keepaway: High-level decision policy
Keepers

- At any instant each keeper takes a role, named K_1, K_2 and K_3.
- K_1: keeper closest to ballfinish, K_1 decides role of other players, let K_1 selects T as its kick target
- K_2: keeper closest to T, tries to move to position T
- K_3: remaining keeper, tries to go to its home position
K1 Keeper

- K1 evaluates the best target position T and tries to get possession of the ball
- If K1 has ball’s possession and takers are far away, holds the ball
- Else attempts to kick at target T
- So, essentially the choices K1 can learn are the choices of target T based on the state of keepaway
- We hope to learn better choices of target T to yield long episodes of keepaway
Takers

- Takers strategy is **fixed** and they don’t try to learn or improve their strategy.
- **GREEDY+RANDOM**: the taker closest to the ball’s position greedily moves towards the ball.
- The other taker randomly selects a keeper other than K_1 and follows this randomly selected keeper.
- To avoid thrashing, the random selection of the keeper to follow is only done when a pass is made.
Mapping Keepaway onto NEAT optimisation

- Select targets from continuous domain, not feasible or desirable
- Select target from a finite set S of points spread out across the field
- Action space very large for RL methods to gather enough sample to learn
- Learn a function $cost(F)$ which scores each point in S based on features from F
Snapshot of Keepaway
Learning Evaluation Function

- Represent the evaluation function as a neural network that computes a real value for a target location $p \in S$ given input features
- Use NEAT to learn the neural network behind the evaluation function
- A particular candidate f is evaluated on 20 episodes of keepaway and the reward for each episode is number of passes made in that episode
Results

Table 1: Comparison of hand coded vs learned evaluation function averaged over 100 episodes

<table>
<thead>
<tr>
<th>Evaluation Function</th>
<th>Number of Passes</th>
<th>Hold Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hand-Coded</td>
<td>3.1 ± 0.062</td>
<td>31.764 ± 0.482s</td>
</tr>
<tr>
<td>Learned</td>
<td>4.55 ± 0.129</td>
<td>43.238 ± 1.034s</td>
</tr>
</tbody>
</table>
Demo
Thank You!